Blog Science

The paradox between electric cars and lithium batteries.

 

The fame of global warming is not free, it is evidenced by entities such as NASA[1], it is defined as "the constant and notable increase in temperature on the earth's surface since the industrial revolution", but in that fame it denotes that the main actors, the protagonists are human beings, our responsibility as users of industries during climate change, would be more than obvious in light of these concepts, and we need each other to preserve part of the ecosystems, natural resources and biodiversity.

Let's talk about what we have done so far: almost all human activities contribute in some way to global warming, since our comfort depends on Energy. If we start to think, drink something hot, be comfortable, watch TV, move, communicate through our mobile, etc., it requires Energy and fuel consumption for it. Electricity generation from thermal sources, transportation, industry (mining, manufacturing, refining, food production, etc.), agriculture, commerce, and even things we do in our homes (consult this text if you wish to expand) . Everything seems to indicate that if we are the protagonists, the use of fossil fuels is one of the antagonists in this problem, which is why it is urgent for us to make an energy transition towards more environmentally friendly sources that reduce or eliminate gas emissions. greenhouse effect causing the increase in global temperature.

When we notice the complexity of the issue and ask ourselves what we can do to contribute to solutions, we see that the actions we can take as ordinary people are related to our habits, how we consume energy in our homes, the way we eat, and how we transport ourselves, to mention a few examples.

In this text we will focus on the issue of transportation: some people contribute by choosing to use public transportation, bicycles, electric vehicles, or even walking. On many occasions, mobility needs or long distances mean that those interested in contributing positively to climate change with their way of transporting opt for electric vehicles such as skateboards, motorcycles or cars. They are media that do not emit carbon dioxide in operation, which makes them a very convenient and clean option, or so it is often believed when advertised or purchased. Although they do not produce polluting emissions when they are operated, reality shows us some environmental disadvantages of this type of vehicle, including its manufacturing process and the energy required to manufacture lithium batteries, which we will discuss below.

 

Manufacture of electric cars and lithium batteries

It is estimated that, during the manufacture of a conventional car powered by fossil fuels, between 7 and 10 tons of CO2 are emitted, an amount similar to that emitted in the manufacture of an electric vehicle. However, for every kilowatt hour (kWh) of battery capacity, around 150 kilograms of carbon dioxide can be emitted during battery manufacturing. For a car that requires charging every 450 kilometers, 60 kWh may be needed, which implies emissions of almost 9 additional tons of CO2 during the manufacture of the battery, for a total of between 16 and 19 tons of greenhouse gases emitted for it to run. you can have a new electric car.

Batteries require electricity to be charged, making the operation of an electric vehicle as "green" as the energy source that is used to generate the electricity.

Lithium is the quintessential material for manufacturing batteries for all types of electronic devices, such as digital watches, toys, computers, cell phones, and of course, electric vehicles. This metal allows for fast charging, is more durable, and has a higher energy density compared to other technologies[2], which is a property that allows more energy to be stored for a longer amount of time, in a lighter package (. However, all these advantages are clouded by various factors, ranging from obtaining the mineral to its final disposal.

Lithium is mainly found in South America, Australia and China. In Chile, for example, lithium is extracted by evaporation of groundwater, in places called salt flats. In these sites, it is suspected that the extraction of the mineral has affected the regular cycles of the water, which has led to droughts that endanger agriculture and livestock. The affectation[3] also extends to damage to the soil, loss of biodiversity, damage to various ecosystem functions, air pollution, and ironically, an increase in global warming () The process itself uses large amounts of water that can no longer be used by the communities near the mining sites. The batteries also require other scarce and toxic minerals, such as cobalt, which is found in countries like the Congo, where this material is collected by men and women without protection measures for the task, additionally there are children exploited for its collection, violating the rights of children in accordance with NGOs (Enlarge in this link, if you wish).

Lithium batteries have a limited number of recharges. Once the useful life of a lithium battery has expired, it should not be thrown into traditional waste deposits, as they can cause fires, but should be separated and recycled properly (See here for more information).

In a country like Colombia, hydroelectric plants are the largest generators of electrical energy, which have minimal or no emissions, however they bring other types of environmental effects such as habitat fragmentation or reduction of native species, among others. If the generating source of electricity is gas, coal or any other type of fossil fuel, then we have a complete paradox, since our car does not generate emissions when running, but producing the energy required for it to operate has high emissions. Other sources that are considered are nuclear plants that, although they do not emit CO2, are known to have other types of environmental risks as a result of the use of highly polluting radioactive materials.

The direction is right to switch to renewable energy and the best way to ensure the "green" operation of an electric vehicle is to recharge its batteries with renewable sources, such as solar, wind or even geothermal energy.

Several of the challenges presented by renewable energies are their low availability at any time, their high initial cost and their low efficiency, which limits being able to meet high energy demands, and forces us to research and develop more in these fields to increase their efficiency. feasibility, capacity and feasibility.

 

final considerations

Electricity is seen as a vital energy ally for a future free of CO2 emissions. However, better ways of generating and storing it need to be developed. Many of the problems mentioned in this text not only involve electric cars, but almost any electronic device that we use in our daily lives, such as cell phones, watches, or laptops.

Different investigations that we tackle include hydrogen batteries, which, for example, could help us convert the most common element in the universe into electricity, without greenhouse gas emissions. Batteries from magnesium, manganese, sodium, or solid state

Here we do not seek to demonize the electric vehicle, we understand and support its transitory role within a zero carbon future, but we also understand that there are characteristics within its construction and operation that are not friendly to the environment, and that must be corrected in The near future. A truly green electric car must be the goal, it is the dream and it must be the reality with which we transport ourselves tomorrow.

[1]

Taken from https://climate.nasa.gov. January 2023

[2] Taken from https://www.apple.com/batteries/why-lithium-ion/ accessed January 2023

[3] affectation

Reference

Relationship between water quality with carcinoma formation.

If you increase your water consumption you could improve your internal processes and better defend yourself in case of cancer. Cancer is the disease with the highest incidence in the world population, according to the American Cancer Society, 1 in 2 men and 1 in 3 women will be diagnosed with cancer in their lifetime [1]. For example, 55% of people diagnosed with lung cancer will die from this cause according to Sieguel in 2022 statistics [2]. Therefore, cancer is one of the main causes of mortality in the world. By 2022, it is estimated that 609,360 people will die from cancer of different types in the United States; being lung, prostate and colorectal cancer the most influential in men while in women the main types of cancer are lung, breast and colorectal (figure 1) [2].

Figure 1. Main types of cancer for the estimate of new cases of the disease and deaths by sex in the United States for the year 2022. [2]

For the incidence of the disease there are multiple risk factors, among these are habits related to lifestyle, diet, life or sexual activity, among others. According to studies, it has been reported that water intake is a protective factor against rectal and colorectal cancer [3]. Which is highly relevant since it is one of the most common carcinomas in the world population, estimating 150,000 new cases in 2022 [2].

 

The intake of water in our body and its importance

Water is the universal solvent and is in contact with all the tissues of our body. This is made up of 60% water, with the lungs being the organs with the highest water content, with 90%, followed by blood with 80% and finally, the brain with 70%. Food contributes about 20% of the total water intake and the remaining 80% comes from the consumption of beverages and drinking water [4]. Given this, the importance of promoting the constant consumption of water that counteracts the sources of loss of this liquid such as losses in urine, breathing, feces and sweat arises, which are the main detoxification pathways of the body where the elimination of waste occurs. wastes and components that are in excess in the body.

By increasing the intake of water, the gastrointestinal transit time decreases. Consider the following if the intestines have a fixed volume[1] of 6 liters and with food we increase water consumption from 1 to 3 liters per day, intuitively the transit time would decrease from 6 to 2 days.

Water positively counteracts carcinoma and by increasing its consumption constipation is avoided and therefore the acceleration of the evacuation of potential carcinogens [3, 4] and leading to toxic environments for the organism. Likewise, it is proposed that maintaining an adequate cell hydration level, which could impact the development of healthy cells, since this promotes cell differentiation and leads to the deactivation of cell death pathways [5]

Water, in addition to being related to cancer, is part of multiple processes, including maintaining the balance of the body. The homeostasis of the organism, being the main determinant of the osmolarity of extracellular fluids. When talking about a deficiency of water in the organism, we talk about hyperosmolar disorders which are correlated with the surrounding sodium in the plasma, reaching a state of high dehydration called hypernatremia [6]. In the same way, water is the main support in which all the chemical reactions of the organism occur, since it acts as a natural and universal solvent in digestive processes, regulating body temperature and even being present in the elimination of organic waste elements [ 7].

It should be noted that the amount of water that must be consumed depends on the individual and their environment, since access to drinking water or water sources can be at great distances from many populations, limiting their consumption. Likewise, the biological sex of the individual and the age in which he is in addition to the physical activity he performs are determining factors in the amount of water required per day [8].

 

References

[1]“American cancer society,” Cancer.org. [On-line]. Available at: https://www.cancer.org/. [Access: 14-Dec-2022].

[2] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2022,” CA Cancer J. Clin., vol. 72, no. 1, p. 7–33, 2022.

[3] J. Shannon, E. White, A. L. Shattuck, and J. D. Potter, “Relationship of food groups and water intake to colon cancer risk,” Cancer Epidemiol. Biomarkers Prev., vol. 5, no. 7, p. 495–502, 1996.

[4] Y. Keren, R. Magnezi, M. Carmon, and Y. Amitai, “Investigation of the association between drinking water habits and the occurrence of women breast cancer,” Int. J. Environ. Res. Public Health, vol. 17, no. 20, p. 7692, 2020.

[5] G. I. McIntyre, “Cell hydration as the primary factor in carcinogenesis: A unifying concept,” Med. Hypotheses, vol. 66, no. 3, p. 518–526, 2006.

[6] Verbalis, J.G. (2003). Disorders of body water homeostasis. Best Practice & Research Clinical Endocrinology & Metabolism, 17(4), 471–503. doi:10.1016/s1521-690x(03)00049-6

[7] Fleta J, Lario A, Fleta B. Importance of water in the human body. Basic concepts. Scientific Nursing 1997; 184-185:76-79

[8] Dai, B., Chen, R., Zhu, Z., Huang, C. (2016). A fuzzy recommendation system for daily water intake. Advances in Mechanical Engineering, 8(5), 168781401664993. doi:10.1177/1687814016649937

[1] Assumed data for ease of calculation

Hydrogen, a small giant, difficult to measure.

 

We need the greenhouse effect, otherwise we would freeze, but we must control it. In addition to CO2, the best known greenhouse gas, there are others, such as methane (CH4), Nitrogen Oxide (NO2), Chlorofluorocarbons and water vapor.

Figure 1. Example of Greenhouse Emissions in the USA 2017. Taken from EPA[1]

“Some atmospheric gases, such as water vapor and CO2, absorb and re-emit infrared energy from the atmosphere towards the Earth's surface. This process, the greenhouse effect, causes the average surface temperature to be 33°C higher than it would be in the absence of these gases. If it weren't for the greenhouse effect, the average temperature would be as cold as -18°C. However, it is the non-condensable or long-lived greenhouse gases – mainly CO2, but also methane (CH4), nitrous oxide (N2O) and halocarbons (CFCs, HCFCs, HFCs) – that act as drivers of the greenhouse effect. Water vapor and clouds act as fast feedbacks, which means that water vapor responds rapidly to changes in temperature, through evaporation, condensation, and precipitation.

This strong feedback from water vapor means that for a scenario considering twice the CO2 concentration compared to pre-industrial conditions, water vapor and clouds would lead to a global increase in thermal energy that would be around three times the value caused by long-lived greenhouse gases. Therefore, if the capacity to retain the heat emanating from the earth's surface is taken as a reference, water vapor and clouds are the largest contributors to warming. The amount of water vapor in the atmosphere has a direct response to the amount of CO2 and other long-lived greenhouse gases, increasing as they do.

It is impossible to directly control the amount of water vapor in the atmosphere, since water is found everywhere on our planet, covering 71% of the Earth's surface. To limit the amount of water vapor in the atmosphere and control the Earth's temperature, humans need to limit greenhouse gases as much as possible; in practice these are CO2 and other long-lived greenhouse gases” [2]

Hydrogen is highly promising as an energy vector, which can turn it into a promising clean energy source in the near future, this is because its combustion reaction generates only water vapor as a by-product, a short-lived greenhouse gas. duration unlike the greenhouse gases generated by the combustion of fossil fuels that are long-lasting, which makes the combustion of hydrogen an attractive alternative for obtaining energy, by reducing the CO2 emitted with a low environmental impact. It is thanks to these characteristics that the extraction and synthesis of hydrogen as an energy vector has become a worldwide competition, to achieve a sustainable process for the extraction of hydrogen, since one of the limitations in the extraction process is the high energy expenditure involved in traditional processes, which consist of electrolysis processes in aqueous matrices, whose principles generate the breaking of water molecules into their elemental components and separate them through a difference in charges, where they are later reconstituted into molecules of oxygen and hydrogen

Hydrogen is a chemical element that has multiple properties that prevent it from being classified like the rest of the elements on the periodic table. Under standard conditions of pressure and temperature, it is mostly in molecular form, this means that two hydrogen atoms join to form a diatomic structure known as H2, thanks to this the presence of this molecule is universal, due to Because hydrogen is the most abundant element in the universe. However, thanks to this characteristic and its great reactivity, it causes that hydrogen on Earth is not found in free form, it is always associated with other elements, for which reason it cannot be considered as a natural resource such as oil or gas. natural.

However, despite the limitations of the hydrogen extraction and synthesis processes, there are currently investment projects in electrolytic technologies for this purpose, these efforts have been mostly by the energy industry, which have as objective compliance with the SDG 2030 agenda to prevent climate change. Currently, the large-scale hydrogen production industry has been able to take its first steps, which means that companies such as Linde lead the production of hydrogen worldwide or hydrocarbon companies such as Ecopetrol are turning to integrated energy companies and starting their Hydrogen generation pilot projects.

Due to this boom in the production of hydrogen, a reliable measurement and quantification of hydrogen is necessary and it becomes a priority for the industrial sector. The path is just beginning and, as mentioned, the complexity of the molecule and its characteristics, such as a low molecular weight, infers complexity in its measurement, which represents a technical challenge to generate specific measurement technologies in order to accurately quantify this precious asset.

At present, there are instruments and techniques for measuring molecular hydrogen at the laboratory level, such as gas chromatography, electrochemical techniques with specific electrodes for this molecule. These techniques fall short when it comes to making measurements on an industrial scale where volume scales over hundreds of cubic meters are handled, which has led to the intensification of research projects for the development of new technologies that can solve these drawbacks.

It is thanks to the need to change fuels that different sectors of the hydrogen industry are growing at high speed, despite technical and technological limitations, advances in hydrogen generation present a great opportunity for different industries, including technical ones. of analysis, sampling, measurement grow and can enter a nascent market, through exploring the convenient characteristics of new fuels for our society.

References

https://d1wqtxts1xzle7.cloudfront.net/56956124/el_hidrogeno_y_la_energia-libre.pdf?1531111788=&response-content-disposition=inline%3B+filename%3DAutores_El_hidrogeno_y_la_energia_El_hid.pdf&Expires=1672111036&Signature=TNZVIsDLmev9~nElV9mev 6B7v2pVjbtTNF7fI82ZvJ9dbdOEqWVLdWGVh6oOiIpwKIBkouCyVnrJPe0hArabgbaHUp4D9~6C5~SqDwKX9rTm4R9~WRbabuzd1zYM~ mZTQCisHg

hBnXQgn8ku6LEUWhjxuzNn8zeOOkcPulwSyy4P4k5t3qNuSQR7UY3tUj2UEmHoLFa8Iyhz1zaJ8dY316Hgtui3IifAvOmbGcNxwLoZzBq~7c0ly-N0l8aZWapywIL8fZNqIrTMJYDqeVAJoC8FAH4C8 nSc1WIY0GE7eigstXSKa9hHHjAP-XRx4OQmXh5bQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

https://www.tecpa.es/energia-hidrogeno/

https://www.sciencedirect.com/science/article/abs/pii/S0925400511003674

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2006.1965

https://www.nationalgeographic.com.es/ciencia/propiedades-hidrogeno-h_18653

[1] https://espanol.epa.gov/la-energia-y-el-medioambiente/descripcion-general-de-los-gases-de-efecto-invernadero

[2] https://public.wmo.int/es/resources/bulletin/observacio%CC%81n-del-vapor-de-agua#:~:text=Some%20gases%20atmosf%C3%A9ricos%2C% 20such%20as,in%20absence%20of%20said%20gases.

Reference

Preservación de los suelos, la emergencia de quien nadie habla.

 

Durante el transcurso del tiempo en las actividades humanas las prácticas agrícolas que se han implementado con el propósito de producir mayor cantidad de alimentos por metro cuadrado, ha llevado a que dentro del sector agropecuario se mantenga un sistema de economía lineal, donde la explotación del recurso “suelo”, no ha tenido en cuenta el complejo ecosistema lleno de vida que lo acompaña. La aplicación de fertilizantes a bases de sales, la implementación de agroquímicos, han influido en la salud del suelo y su capacidad de producción.

Actualmente en Colombia la producción agrícola en su mayoría se realiza en suelo o campo abierto, debido a que es más económico establecer los cultivos en tierra y porque los terrenos tienen la capacidad de implementar diferentes especies vegetales. Además la ubicación geográfica nos permite contar con diferentes pisos térmicos, facilitando la implementación de cualquier cultivo en nuestro país. El territorio colombiano cuenta con 39.2 millones de hectáreas potenciales para la producción agrícola y solo 5.3 millones (aprox.) de hectáreas están sembradas. Por tal motivo debemos cuidar el suelo, ya que es la fuente principal de producción de la mayoría de los alimentos que se consumen en el país. Estos alimentos requieren de agua que normalmente se encuentra bajo la superficie en pozos subterráneos. Detectando las profundidades del nivel freático (NF) en los suelos de cultivo podremos minimizar los riesgos de la producción y la forma en que se trabajaran los suelos de acuerdo con sus condiciones y características.

Muchas veces el desconocimiento de la importancia del nivel freático causa un inadecuado manejo del suelo en el sector agropecuario. Por ejemplo, cuando hay terrenos con exceso de agua aumentan los porcentajes de salinidad y sodio, originando reducción en la actividad microbiana y aumento en la conductividad eléctrica óptima para las plantas. Estos factores imposibilitan la asimilación de manera eficaz y eficiente los minerales necesarios para el desarrollo y producción de las plantas. Por otra parte, el ascenso capilar causado por el exceso de agua facilita el proceso de anoxia en el sistema radicular por la falta de oxígeno, ocasionando en poco tiempo la muerte de la planta. El exceso permanente de agua con lleva a que las labores culturales y de cosecha se vean afectadas, lo que conlleva al aumento de costos dentro de la unidad productiva.(Miguel Coras Merino et al., 2014). Por el contrario, deficiencia de agua podría ocasionar sequías o influirá en el crecimiento de las plantas y el comportamiento del suelo.

¿Qué podemos hacer para mejorar la productividad de nuestro suelo?

Actualmente la productividad del país podría mejorar sus capacidades. Para esto la información y  conocimiento sobre los siguientes aspectos es fundamental:

Primero la implementación de técnicas y tecnologías, segundo el equilibrio de los precios y las consecuencias de la no regulación permitiendo precios impuestos por el mercado, incluyendo como tercero: el costo de los insumos, cuarto la adecuada capacitación de los agricultores, con datos veraces de (NF) en los suelos disponibles y quinto la monopolización de la tierra. En el caso de las tierras los mejores predios para la producción agrícola se encuentran usados en la ganadería extensiva y otras extensiones están como latifundios improductivos.

En el caso específico de la productividad con respecto al nivel freático del suelo está llevando a que la capacidad de producción de los predios rurales disminuya por la afectación de los requerimientos óptimos del cultivo. No se ha determinado de manera cuantitativa el efecto de la profundidad del NF sobre el crecimiento de la planta y la producción de los frutos. Esta problemática se puede resolver realizando estudios respectivos para determinar las profundidades del NF, con dicha información se podrá determinar el tipo de cultivo optimo a implementar y los riesgos de inundación y aridez que se puedan presentar durante el ciclo del cultivo. Aunque parezca complejo de realizar, se puede evaluar preliminarmente la infiltración del terreno como prueba subjetiva e indagar con las personas que viven cerca al predio adquirido o que se pretende adquirir. (Fondo Nacional de Investigaciones Agropecuarias (Venezuela) et al., 2003)

Es importante el conocimiento del NF

En el caso de los cultivos las especies hortícolas se desarrollarían de manera adecuada con un NF entre 50 a 60 cm, las plantas anuales entre 60 a 80 cm y para los cultivos perennes entre 1 a 1.5 m. Los valores anteriores dependerán de la estructura, textura del suelo y la topografía del terreno.

Los requerimientos óptimos para cada tipo de especie vegetal permitirán que las plantas desarrollen su sistema radicular hasta el nivel de la capa freática, con el fin de evitar los riesgos de asfixia radicular o problemas fitosanitarios.

A medida que el nivel freático se encuentra mas cerca a la superficie terrestre el ascenso capilar se eleva alrededor de 4mm por día y cuando la profundidad del NF es superior a 1 m, el ascenso capilar oscila entre 2 a 3 mm por día.

La importancia de los datos mencionados anteriormente llevara a planificar los procesos de implantación de cultivos agrícolas, ejecutando practicas amigables que protejan el suelo para evitar que el nivel freático cada día se acerque a la superficie o se profundice fuera de los límites. Cualquiera de las dos opciones traerá consecuencias para la producción de alimentos, en la primera situación se presentará inundaciones, salinidad y muerte de los cultivos por asfixia radicular y en la segunda situación las posibilidades de sequias serian altas. Cohibiendo la profundidad efectiva de las raíces y por lo tanto se requeriría de mayor cantidad de agua por riego externo y además se vería afectado el caudal de agua de fuentes superficiales por la profundización de las aguas subterráneas.(Mensegue et al., n.d.)

 

Fuentes:

Fondo Nacional de Investigaciones Agropecuarias (Venezuela), F., Instituto Nacional de Agricultura (Venezuela), R., Centro de Investigaciones Agronómicas (Venezuela), R., & Centro Nacional de Investigaciones Agropecuarias (Venezuela). (2003). Agronomía tropical : revista del Instituto Nacional de Agricultura. In Agronomía Tropical (Vol. 53, Issue 4). Instituto Nacional de Investigaciones Agrícolas (INIA). http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2003000400003&lng=es&nrm=iso&tlng=es

Mensegue, V., Privado, A., -unrc, F., INTA Laboulaye, A., & INTA Marcos Juárez, E. (n.d.). Escenarios de variación del nivel freático para suelos agrícolas de la región de Marcos Juárez-Campaña 2015-16. www.proin-unrc.com.ar

Miguel Coras Merino, P., Ontiveros Capurata, R., & Diakite Diakite, L. (2014). Núm. 4 30 de junio-13 de agosto. In Revista Mexicana de Ciencias Agrícolas (Vol. 5).

ISLAS COLOMBIANAS: MEJORANDO LA SEGURIDAD ALIMENTARIA.

 

Todos alguna vez en la vida nos planteamos e imaginamos la posibilidad de viajar o desplazarnos por las vacaciones a las islas del caribe o pacifico colombiano, es cautivante la temperatura y los colores de las aguas circundantes a las extensiones de tierra que emergen de los mares; pero no todo es mar y alegría, quienes han tenido la posibilidad de realizar dichas visitas suelen cuestionarse sobre los costos por conceptos de alimentación que las cadenas hoteleras ofrecen, ¿nos hemos planteado por qué?, ¿qué factores inciden para que este desbalance entre las leyes de la oferta y la demanda fijen altos costos en el precio de los alimentos? Y más grave aún ¿Cómo logran los moradores y nativos de las islas acceder a la canasta básica de alimentos en medio de una economía tan limitada?

Si bien a comienzos del siglo XX la agricultura y pesca artesanal eran actividades suficientes para auto abastecer la demanda interna de alimentos para la población de una isla como San Andrés, la paulatina llegada del turismo y el creciente tránsito de personas no nativas de aquellos territorios, fijó el primer desbalance (hasta ahora sin retorno) entre los alimentos producidos y los consumidos; estableciendo no solamente una problemática de índole económico, sino, una quizá más grave: el cambio de los hábitos alimenticios de la población. Según un estudio de la Universidad Nacional de Colombia con sede en el Caribe, se determinó que en San Andrés no se consume frutas y verduras en raciones suficientes por sus elevados costos, en cambio la dieta ha sido reemplazada por alimentos procesados provenientes en barcos o aviones desde la Colombia continental, Costa Rica y los propios Estados Unidos.

Como efecto adverso adicional a la problemática planteada, no hay que ser muy observador para detallar la inconveniencia que trae consigo el uso de medios de transporte que obtienen su potencia a base de combustibles fósiles aportando emisiones de gases efecto invernadero, así como, el gravamen en el valor de las mercancías transportadas por conceptos de flete y logísticas asociadas incrementando el costo de los alimentos.

Con el panorama anteriormente expuesto, se infiere el paradigma sobre la producción local de los alimentos por una parte y por la otra seguir importando desde el exterior a las islas los alimentos; todo esto dentro de un marco económico que permita seguridad alimentaria, competitividad y beneficios adicionales. En torno a la producción local se deben tener en cuenta los siguientes aspectos que proponen nuevos retos y se asumen como debilidades para la rentabilidad de tal proceso.

 

1.Verdadera implementación de políticas estatales en esta materia

Se ha legislado bastante en este sentido, buscando ofrecer un marco normativo que permita  desarrollar al Estado Colombiano procesos de acompañamiento, inversión y desarrollo; basta con remitirse a la Ley 1876 de 2017 por la cual se crea el Sistema Nacional de Innovación Agropecuaria por sus siglas (SNIA) “como instrumento de planificación cuatrienal que define los elementos estratégicos, operativos y financieros para la prestación del servicio público de extensión agropecuaria en el área de influencia de un departamento y sus municipios” para evidenciar la importancia que el Estado (al menos en el papel) le da al tema. Bajo esta misma ley se creó el Plan Estratégico  de Ciencia y Tecnología para el Sector Agropecuario (PECTIA) “como herramienta de planificación que define los objetivos estratégicos, las estrategias y las líneas de acción, en materia de ciencia, tecnología e innovación sectorial para aumentar la competitividad, sostenibilidad y el mejoramiento de las condiciones de vida de la población, con el fin de tener una visión de las demandas y brechas en las cadenas de valor de los departamentos y priorizarlas para abordar las soluciones del sector agropecuario”. Es necesario un seguimiento, sobre la verdadera implementación y la mejora del desbalance antes mencionado, además de la territorialización de dichas políticas en los departamentos o regiones que incluyen en sus territorios extensiones de tierra fuera de las costas y mar adentro.

 

2. Acceso a agua para riegos

Aumentar la disponibilidad de agua idónea para el riego de cultivos que se puedan realizar desde el interior de las islas. Para el caso de San Andrés, el agua que se suministra para el consumo humano y algunas otras necesidades, proviene de una planta desalinizadora. Sin embargo, en el caso de realizar plantaciones o cultivos adicionales, se supondría un incremento en la demanda del agua de dicha planta, situación que habría que revisar en detalle, ya sea para ampliar la capacidad de desalinización o buscar alguna otra manera de disponer de agua para riego.

 

3. Oferta gastronómica

Un reto que trascendente a nivel cultural, es promover platos típicos de la región, diversificar las cartas de los grandes restaurantes e incluso restituir la memoria o antiguas costumbres alimentarias ya perdidas por los isleños a la hora de consumir alimentos. Según el artículo “San Andrés no le saca el jugo a sus frutas” publicado en septiembre de 2012 en el portal agencia de noticias de la Universidad Nacional, en el que se mencionan trabajos de investigación (tesis) al respecto; habría una gama de alimentos con potencial para la agroindustria local, frutos tales como el marañón, el anón, la guanábana, el fruto del pan (breadfruit), el mango, el aguacate, el june plum, el icaco, el caimito, el níspero, el mamoncillo, la grosella, la guayaba, el tamarindo, la cañafístula, el mamey y el jobo podrían suponer un muy buen margen de producción con una relativa facilidad, . La promoción de dichos frutos al interior de la isla para  los visitantes a los hoteles e incluso por los propios moradores, evidenciando sus ventajas y mejoras de la economía interna es un trabajo de estado y residentes, que radica en la voluntad política.

Las oportunidades para ofrecer soluciones a todo nivel, como los altos costos de los alimentos en las islas, el transporte de los mismos nos deja en soluciones para pensar y repensar las maneras de sortear cada una de las problemáticas e intentar que sean cada vez menos los barcos o aviones la “tierra fértil” de donde brotan los alimentos que se consumen en las islas colombianas.

Fuentes:

http://agenciadenoticias.unal.edu.co/detalle/san-andres-no-le-saca-el-jugo-a-sus-frutas#:~:text=La%20agricultura%20del%20Archipi%C3%A9lago%20de,abastecimiento%20de%20alimentos%20se%20refiere.

https://www.minagricultura.gov.co/ministerio/direcciones/PublishingImages/Paginas/PDEA/San%20Andrs%20Islas.pdf

https://www.eltiempo.com/archivo/documento/MAM-270233